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Chapter 1 

Introduction 

1.1    Project Summary 

1.1.1 Scope 
The scope of this research contract was the development of CAD tools that can compute 
statistical information (in particular, mean and variance) about the power dissipated in a 
continuous-time or switched-capacitor circuit, when the inputs to the circuit belong to a 
class of signals whose statistics are given. Specifically, two power estimation CAD programs 
were developed: one for continuous-time analog circuits, the other for switched-capacitor 
circuits. Those tools were integrated into an existing commercial CAD environment, namely 
CADENCE'S Design Framework II. 

1.1.2 Research into Power Estimation Algorithms 

This task involved the theoretical study of the algorithms on which the power estimation tools 
rely. This task developed a sound mathematical theory of power estimation in continuous- 
time and switched-capacitor circuits. Based on this theory, it was possible to establish a 
confidence level in the power dissipation estimates given by the developed tools. 

1.1.3 Development of Power Estimation Tools 

This task involved the development of software based on the algorithms studied as a part 
of the previous task. This software consists of a CAD program for power estimation in 
continuous-time analog circuits, and another program for power estimation in switched- 
capacitor circuits. Those tools were integrated into an existing commercial CAD environ- 
ment, CADENCE's Design Framework II. CADENCE has developed a set of tools, called 
Open Simulation System, to encapsulate third-party CAD tools into their design environ- 
ment. 

In order to verify the performance of the developed CAD tools, a set of benchmark circuits 
was collected. Care was taken to ensure that this set includes circuits that are representative 
of actual industrial designs. 



1.1.4    Generation of Documentation, Papers and Reports 

Use of the software will be illustrated later in this report on examples taken from the set 
of collected benchmark circuits. The theoretical and experimental results obtained in the 
course of the proposed research effort were also presented in journal and conference papers. 
The results attained by this research project are summarized in this final report. 

1.2    Innovative Claims 
Most (if not all) of the published work on CAD tools for power estimation concerns itself 
only with digital circuits. However, many emerging product technologies, such as personal 
computing and communication systems, involve mixed signal processing. The goal of the pro- 
posed research was to develop power estimation CAD tools for continuous-time and switching 
analog systems. Note that ordinary circuit simulators (such as SPICE) are not suited for 
that task, because they can only compute the power dissipated by the circuit for one specific 
set of input signals. In contrast, the goal of the research effort described here was to de- 
velop CAD tools that can compute statistical information (in particular, mean and variance) 
about the power dissipated in a continuous-time or switched-capacitor circuit for a variety 
of input signals (whose statistics are given). This approach mirrors the one generally used 
to estimate power dissipation in digital CMOS circuits. This approach has the following 
distinguishing features: 

No restrictions on the type of circuit: The methods used to estimate power dissipa- 
tion are completely general, and they do not rely on any particular assumptions about 
the type of circuit under consideration (other than it contain no distributed ele- 
ments). As such, this methodology can be applied to a large class of circuits, including 
continuous-time and switched-capacitor filters, RF mixers and amplifiers, phase-locked 
loops, and so on. 

Arbitrary granularity: The method used computes at once statistics for all voltages and 
currents in the circuit. As a consequence, power dissipation can be estimated with the 
same confidence at any desired granularity, down to the component level, if necessary. 
Moreover, an increase in the granularity of the estimation has only a marginal effect 
on the total computational effort. 

No Monte-Carlo analyses required: The proposed algorithm gives the statistics of all 
voltages and currents of interest as the solutions of certain sets of linear, algebraic 
equations (even if the circuit in question is nonlinear and not memory less). The only 
operations involved are numerical solution of linear equations (e.g. by Gaussian elimi- 
nation) and numerical quadrature (to evaluate some of the coefficients of the equations 
to be solved). Therefore, no Monte-Carlo analyses or time-domain simulations of the 
circuit involved are required. Note that a Monte-Carlo approach to power estimation 
in analog circuits would be extremely computationally intensive, because collecting 
each sample would require a time-domain simulation of the circuit involved. 



No need to assume uncorrelated inputs: Many of the published power estimation al- 
gorithms for digital circuits make the assumption that the primary inputs to the circuit 
are statistically independent (e.g., [1]). In some cases, this may be an unrealistic as- 
sumption (e.g., when the inputs are signals generated by optical sensors which are part 
of an optical array). Algorithms that do not rely on the uncorrelation assumption are 
significantly more expensive in terms of computational effort required [2]. In contrast, 
the algorithms used by our power estimation tools allow the primary inputs to the 
circuit to be correlated without affecting the overall computational cost. 

No memoryless assumption: The vast majority of power estimation algorithms for dig- 
ital circuits assume instantaneous transitions. While this approximation is acceptable 
for the purpose of power estimation when dealing with digital or switched-capacitor 
circuits, it is clearly no longer so in the case of continuous-time analog circuits. The 
algorithm used by our power estimation tools takes the dynamics of the circuit into 
full account. 

Integration with other tools: CADENCE's Open Simulation System is a set of tools to 
encapsulate third-party analysis tools into CADENCE's Design Framework II envi- 
ronment. In particular, the SKILL language allows external access to the databases 
used by other CADENCE tools. Our power estimation tools were integrated into CA- 
DENCE's Design Framework II. In this way, it is possible to use them in conjunction 
with other tools, such as power estimators for digital circuit, thus enabling designers 
to estimate power consumption in complex mixed-signal systems. 



Chapter 2 

Development of Power Estimation 
Tools 

2.1    Choice of HDL 
Cadence's Design Framework II serves as a front-end to the power estimation tools developed 
as a result of this research project. For this purpose, it was necessary to develop a suitable 
interface between our tools and the Cadence environment. It was determined that the best 
way to achieve this goal is to exploit Cadence's Open Simulation System (OSS), which 
allows the integration of third-party CAD tools into the Cadence system. OSS provides 
a user interface for controlling the execution of simulation, the generation of netlists and 
input vectors, and the display of the simulation results which is consistent with the interface 
used by the other tools in the Design Framework II environment. Specifically, OSS provides 
two tools to generate netlists in textual format: a Hierarchical NetLister (HNL) and a Flat 
NetLister (FNL). Both netlisters are capable of producing output in a user-defined format, 
described using the Cadence standard language, SKILL. 

The netlist format depends upon the choice of the Hardware Description Language to be 
used. Several factors must be considered, such as portability, popularity among CAD tool 
users, syntactic structure, and so on. Design Framework II has its own analog hardware de- 
scription language (HDL), called SpectreHDL, which is understood by Cadence's simulator 
SPECTRE. SpectreHDL was the first language we considered using for our front-end. How- 
ever, this idea was set aside after we found out that SpectreHDL is a proprietary language, 
in order to avoid the legal complications that the use of a proprietary language would entail. 
Similar considerations ruled out the use of other proprietary languages, such as Analogy's 
MAST and Anacad's A-VHDL. 

Languages that are widespread and in the public domain are preferable to proprietary 
languages whose use is not very common. In this respect, a SPlCE-like language would seem 
to be the best choice. There are a number of SPICE-like languages in the public domain 
which might have been used, possibly with some minor modifications, for our front-end. On 
the other hand, it is much easier to write a netlist generator and a parser for a structured 
language like VHDL than for a completely unstructured one, like the SPICE family. On the 
other hand, SPICE-like languages are very unstructured, which makes it difficult to write 
netlist generators and parsers for them. Moreover, every commercial CAD vendor seems to 
have its own version of the SPICE language, which is always different in some respect from 



those used by other vendors. 
Taking all these considerations into account, we concluded that the two best candidates 

were Verilog-A and VHDL-A, both of which are analog extension (still under development) 
of the corresponding digital languages. Both languages are in the public domain, are widely 
used by a variety of commercial CAD tools, and industry-wide standards for their analog 
extensions are currently being developed. Moreover, LEX and YACC files to write a VHDL 
parser are already publicly available, and with only minor modifications to them it would 
be possible to obtain a VHDL-A parser fairly easily. These considerations led us to choose 
VHDL-A as the interface language between the Design Framework II and our software tools, 
even if a standard for that language is still under development. Drafts of the proposed 
language semantics were obtained from the 1076.1 IEEE subcommittee, which is in charge 
of VHDL-A development. The language to be used by our tools is based on those drafts. 
When the final version of the VHDL-A standard is officially released, it should be possible 
to make our language conform to the adopted standard with only minor modifications. 

2.2    Net list Generation 
Our tools will interface with the Cadence Design Framework II environment through Ca- 
dence's Open Simulation System (OSS). Among other things, OSS has the capability to 
generate automatically from the Cadence database a netlist formatted according to user 
specifications. Our plan was to use OSS to generate VHDL-A netlists from Cadence's Com- 
poser (their schematic capture tool), and then have our tools use the VHDL-A netlists as 
input. As this sequence of operations can be performed in a completely automated way, the 
whole process is completely transparent to the user. 

Cadence's Design Framework II supports netlist generation in user-defined formats through 
customizable functions that must be written in Cadence's SKILL language. These functions 
as a whole constitute as so called "output formatter." The functions necessary to traverse the 
design database are included in the Design Framework II. After setting the output variables, 
the netlister traverses the database and builds a list of all the cells that must be placed in 
the netlist. For each cell, the traversal functions call one of the output formatter's function 
to generate appropriate output corresponding to that portion of the design. 

In order to write a netlister suitable for our purposes, we had to become familiar with 
Composer, one of Cadence's schematic entry tools. We also learned the basics of the Cadence 
language named SKILL and the of the hierarchical netlister tool HNL. As explained above, a 
knowledge of SKILL is necessary to understand and write appropriate netlister functions that 
will map the various names, nodes and subcircuit descriptions found in the circuit schematic 
to the netlist format. Then, using Cadence-supplied files as templates, we wrote a set of 
netlisting functions that generate output in VHDL-A from Cadence schematic diagrams. As 
an example, the circuit whose diagram is shown in Fig. 1 generates the following output: 

architecture structural of amplifier is 
begin 
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Figure 1: A Sample Schematic from Cadence's Design Framework II 

vcil6: VCI generic map (15) 
port map (p => out, m => gnd, cp -> out, cm => out); 
c6:  capacitor generic map (le-12) 
port map (p => out, m => gnd); 
r5: resistor generic map (1000) 
port map (p => netl5, m => out); 
pmpl: pmos generic map (2e-05, 2e-05) 
port map (D => vdd, G -> vdd,  S => netl9, B => vdd); 
nmnlO: nmos generic map  (5e-06,  le-05) 
port map (D => netl3, G => il,  S => netl5, B => gnd); 
nmn9: nmos generic map (5e-06,  le-05) 
port map (D => net15, G => vdd,  S => vdd, B => gnd); 
nmn3: nmos generic map (le-05, 4e-05) 
port map (D => netl9, G => i2, S -> netll, B => gnd); 
nmnO: nmos generic map (le-05,  le-05) 
port map (D => netl3, G => netll, S => gnd, B *> gnd); 

end structural; 

A partial listing of the SKILL files that make up the netlister is given in Appendix 1. 

2.3    HDL Parser 
To generate a parser for the netlists produced by our netlister, we relied on the lexical 
analyzer generator LEX [3] and on the parser generator YACC [4]. LEX is a program generator 
designed for lexical processing of character input streams. It accepts a high-level, problem 



oriented specification for character string matching, and produces a program in a general 
purpose language which recognizes regular expressions. The regular expressions are specified 
by the user in the source specifications given to LEX. The LEX written code recognizes these 
expressions in an input stream and partitions the input stream into strings matching the 
expressions. The program that recognizes the expressions is generated in the C programming 

language. 
YACC provides a general tool for imposing structure on the input to a computer program. 

The YACC user prepares a specification of the input process: this includes rules describing the 
input structure, code to be invoked when these rules are recognized, and a low-level routine 
to do the basic input. YACC then generates a function to control the input process. This 
function, called a parser, calls the user-supplied low-level input routine (the lexical analyzer 

"generated by LEX) to pick up the basic items (tokens) from the input stream. These tokens 
are organized according to the input structure rules, called grammar rules: when one of 
these rules has been recognized, then user code supplied for this rule is invoked. In this way, 
the behavior of the parser can be tailored to the user's needs. Both LEX and YACC are 
standard commands in most UNIX-derived operating systems, and have been extensively 
used to implement compilers for the most disparate tasks. 

As mentioned earlier, one reason that led us to choose VHDL-A as the input language 
for our tools was the availability of LEX and YACC files for VHDL. Because VHDL-A is an 
extension of VHDL, we were able to use those files as a starting point to generate a lexical 
analyzer and a parser suitable for our purposes. In particular, the VHDL LEX file was written 
at the University of Dortmund, Germany, based on a scanner included in the ALLIANCE 
CAD toolset, which is a product of the MASI/CAO-VLSI CAD Team, Universite Pierre 
et Marie Curie, Paris, France. This file required only minor modifications to adapt it to 
VHDL-A. The YACC file, on the other hand, was not readily modifiable to suit our needs. 
As we did not need a parser for the complete VHDL-A language, but only for a small subset 
of it, we decided that it would be faster and easier to write our own YACC file, using the 
VHDL YACC file only as a template. 

We now have LEX and YACC files that can be used to parse netlists, such as the one 
shown in Section 2.2, generated by the netlister that we wrote for Cadence's Framework II 
environment. These files provide us with a working interface with the Cadence environment: 
for reference purposes, a listing of those files is given in Appendix 2. 

2.4    Development of a hierarchical netlister 
The development of a hierarchical netlister that generates VHDL-A output was completed. 
This included modifying some SKILL code already written so that the netlister's output 
would conform to the current VHDL standard, and to extract parameter names and values 
directly from cell properties. The data that must be generated by the netlister includes 
information that is specific to each element in the netlist (e.g., the number and the names 
of terminals, the names and the values of element parameters). When the netlister was 
initially developed, element-specific code was written for each element that the netlister was 



to be able to handle. This meant that new code had to be written to give the netlister 
the capability to handle additional elements, and also that the netlister wouldn't be able to 
handle a library where the element-specific information was encoded in a different manner. 
By making appropriate modifications to the netlister's SKILL code, this restriction was 
removed and the resulting netlister is now able to generate VHDL-A output in a way that 
is element- and library-independent. Further efforts where pursued to help improve the 
performance of the netlister. Test circuits were developed and netlisted to verify the proper 
operation of the netlister. During this process, a number of switched-capacitor circuits were 
entered into the Cadence environment for future testing. 

2.5    Development of a parser for a subset of the VHDL- 
A language 

CADENCE'S Design Framework II has a component library dedicated to switched-capacitor 
circuit design (the scdslib library). This library contains ideal components, such as switches 
and clocks, that are not contained in other libraries. In order to make our software compatible 
with switched-capacitor designs that use that library, the VHDL-A interface had to be 
modified slightly. Specifically, design primitives were added for switches and clocks, and 
the VHDL-A parser was modified accordingly. The SKILL code for the HNL netlister also 
had to be modified to handle the additional primitives. This is an examples of the netlist 
generated from a switched-capacitor design that uses the scdslib library: 

architecture structural of example.lwsrc is 
node    Vout, Vin, netlO, net6, net11; 
begin 

VI: entity vdc 
generic map( vdc => 1.000000, srcType => "dc", FNpairs => 0) 
port map( MINUS => gnd, PLUS => Vin); 
115:  entity clock 
generic map( clockName => "phi2", phaseList => "0 1"); 
114:  entity clock 
generic map( clockName => "phil", phaseList => "1 0"); 
NO:  entity sc0pamp2 
generic map( bw -> 1000.000000, Gain => 100000.000000) 
port map( negout => gnd, negref => netll, posout => Vout, 
posref => gnd); 
Cl: entity capacitor 
generic map( c => le-12 ) 
port map( Nl => net10, N2 => net6); 
N7:  entity spst 
generic map( clockName => "phil", Ron => "1") 
port map( Nl => netll, N2 => Vout); 

8 



end architecture; 

2.6    Code development for the power estimator 

The overall configuration of the switched-capacitor power estimator was outlined, and the 
various data structures that will be needed were defined as dictated by the chosen config- 
uration. To keep the code as modular as possible, it was decided to use an object-oriented 
approach whenever possible. A single object class will be used to handle all the various 
element types in the circuit: element specific code will be written only when it is indis- 
pensable to do so (e.g. to evaluate the stamp of that particular element). Overall, the 
switched-capacitor power estimator contains the following modules: 

1. An input module 

2. A preprocessing module 

3. A circuit matrix evaluation module 

4. A matrix solution module (to compute average power dissipation) 

5. A Lyapunov solution equation module (to compute the standard deviation of the power 
dissipation). 

The functionality of those modules is the following: 

1. The input module parses the VHDL-A input netlist and store all the circuit data in 
suitable data structures. 

2. The preprocessing module determines the connected components of the circuit during 
each clock phase, i.e., it identifies the clusters of nodes that are connected by closed 
switches during each clock phase. This information is needed to build the modified 
nodal analysis matrices corresponding to each clock phase. 

3. The evaluation module builds one modified nodal analysis matrix for each clock phase, 
using the information provided by the preprocessing module. 

4. The matrix solution module computes the expected values of the circuit's electrical 
variables (voltages, currents) by solving a system of linear equations in a way that 
takes advantage of the system's particular structure. The expected average power 
dissipation can be computed from this information. 

5. The Lyapunov equation solution module solves the discrete-time Lyapunov equation 
and computes the standard deviation of the power dissipation. 



After the overall structure of the power estimator was settled upon, the next step was to 
determine the appropriate data structures and algorithms that would be needed for the power 
estimator. In particular, a necessary preprocessing step is the identification of the connected 
components of the circuit during each clock phase. By definition, a connected component 
is a cluster of nodes in the circuit that are connected by closed switches. Because the 
configuration of the switches changes at each clock phase, so do the connected components. 
An efficient method was found for determining the connected components for each phase 
of the circuit. With this information available, it is possible to build the modified nodal 
analysis (MNA) matrices for each clock phase using the familiar concept of element stamp. 
By definition, the stamp of an element contains that element's contribution to the MNA 
matrix. Because the nodes an element is connected to may belong to different connected 
components in different clock phases, it is possible for an element to have different stamps 
in each clock phase. Once the connected components have been identified, it is possible to 
define the stamps of each element in the circuit and use them to build the MNA matrices. 
This approach is consistent with the chosen object-oriented approach, according to which 
the code is kept as modular as possible, with each module being associated with an object 
(in this case, a particular type of circuit element). 

After all the necessary data structures were defined, actual coding was undertaken. How- 
ever, an examination of the numerical results initially obtained by the switched-capacitor 
power estimator revealed that the power dissipation computed by the simulator was some- 
times incorrect. The reason was that in order to estimate the power dissipated by a generic 
element, one must compute E{vi), where i and v are the current and the voltage across the 
element, and E() represents the expected value. In the case of independent sources, the 
value of v is known with certainty, which implies that E(vi) = vE{i). Thus in this case 
the power dissipated can be computed from a first-order moment (i.e., E(i)). In the case 
of op-amps, the values of both v and i are uncertain, which means that one must compute 
E{vi). In general, E(vi) is not equal to E{v)E(i) (which is the incorrect assumption that 
had been made initially), which means that in this case the power dissipated cannot be 
computed simply from first-order moments. Instead, the second-order moment E(vi) must 
be computed, which can be done only by solving a discrete Lyapunov equation. 

Because the size of the Lyapunov equation can be very large, a literature search was 
performed in order to determine if efficient algorithms for the solution of this particular type 
of equation had already been published. This search revealed that, although a number of 
such algorithms exist, all have drawbacks that severely limit their usefulness. It was therefore 
decided to use a "brute force" approach, i.e., to solve the Lyapunov equation using ordinary 
Gaussian elimination. Although this method does not try to exploit the particular structure 
of the system of equations, it is the most straightforward to implement, and it is reliable 
in its numerical performance. Moreover, among the various methods considered, it was 
the one that could be implemented in the least time. After this particular method has been 
successfully implemented, and its numerical performance can be measured on actual circuits, 
we will look for alternative, more efficient algorithms to solve the Lyapunov equation. 
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The Lyapunov equation generated by the power estimation algorithm consists of a set of 
equations of the following type: 

YfcPfc+i YT
k = DfePfcDl + FQFT. 

There is one such equation of each clock phase. The unknowns in this equation are the 
entries of the matrix Pfc+i, which a symmetric nxn matrix, where n is approximately equal 
to the number of nodes in the circuit. Because the matrix P*+i is symmetric, the number 
of unknown entries is n(n + l)/2. Thus, if there are p clock phases (typically, p = 2 or 
p = 4), the total number of unknowns (that is, the size of the overall system that must be 
solved) is pn{n + l)/2. In order to solve this system using ordinary Gaussian elimination, 
the equations described above must be assembled in a large system of the type Ax = b, 
where x is a vector containing all the pn(n + l)/2 unknowns. The implementation of this 
algorithm requires mapping the entries of the matrices Pfc into the vector x, and the entries 
of Yfc and Dfc into the coefficient matrix A. These modifications were incorporated into the 
power estimator code. 

In its final implementation, the power estimator does all of the necessary preprocessing 
for each phase of the circuit, and computes the average power dissipated by the circuit under 
the specified input conditions. The power estimator can read VHDL-A netlists generated 
by the netlister previously completed, and it computes an estimate of the average switching 
power dissipated by the circuit for the given input statistics. To test the power estimator, 
a library containing a number of switched-capacitor circuits was created using CADENCE's 
Design Framework II tools. The size of the circuits ranged from one op-amp and a few 
capacitors to several op-amps and tens of capacitors. The netlist generator was then run 
on each circuit, and the resulting netlists were used as inputs to the power estimator. The 
results are summarized in Table 1: 

Table 1: Results of Power Estimation Simulations 

Circuit 
Matrix 

Size 
Switching 

Power (/xW) 
CPU 

time (ms) 

SCAmp 14 1.500 250 
Biquad 44 137.8 310 

ElliptO 96 12.34 550 
Elliptl 60 5.189 350 
Ellipt2 66 .2594 340 

The operation of the switched-capacitor power estimator and the results of the numer- 
ical simulations are described in a paper which was presented at the 1996 International 
Conference on Computer-Aided Design. 
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Chapter 3 

Power Estimation in 
Switched-Capacitor Circuits 

3.1    Background 
A number of low-power designs, such as those for mobile communication equipment, contain 
switched-capacitor circuits. In such designs it is important to be able to estimate the power 
dissipated by the switched-capacitor portion of the circuit. One of the tasks of this research 
project was the development of CAD software for the computation of statistical information 
about the power dissipated in a switched-capacitor circuit when corresponding statistical 
information about the inputs to the circuit is known. Ordinary circuit simulators are not 
suited for this task, because they can only compute the power dissipated by the circuit for 
one specific set of input signals. The algorithm does not require Monte-Carlo analyses, and 
it accounts for correlation among the inputs. To demonstrate the software's performance, 
numerical results obtained on a number of sample switched-capacitor circuits are reported. 

Most of the published work on CAD tools for power estimation concerns itself only with 
digital circuits. However, many emerging product technologies, such as personal computing 
and communication systems, involve mixed signal processing. Therefore, in order to predict 
the power dissipation of such systems, it is necessary to estimate the power dissipated by the 
analog portion. In the specific case of switched-capacitor circuits, the total power dissipation 
is the sum of two terms: the power absorbed by the op-amps, and the switching power, that 
is the power dissipated in charging and discharging the capacitors. In traditional switched- 
capacitor designs, the first term is by far the dominant one. The push towards the reduction 
of power requirements, however, has spurred the design of op-amps whose power dissipation 
is in the tens of microwatts [5]. It is precisely in this type of low-power design that the 
estimation of the switching power becomes important, because it is no longer a negligible 
fraction of the total power dissipation. It must be noted that in most cases, the power 
dissipated by an op-amp can be assumed to be constant, regardless of the applied input [6]. 
Therefore, only the estimation of the switching power requires nontrivial calculations. 

This report describes an algorithm for statistical estimation of power dissipation in 
switched-capacitor analog circuits. Note that ordinary circuit simulators are not suited 
for this task, because they can only compute the power dissipated by the circuit for one spe- 
cific set of input signals. In contrast, the algorithm described here allows the computation 
of statistical information about the power dissipated in a switched-capacitor circuit for a 
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variety of input signals whose statistics are given. This approach mirrors the one generally 
used to estimate power dissipation in digital CMOS circuits. The algorithm can be applied 
to any switched capacitor circuit whose elements can be modeled as ideal switches, linear 
capacitors, independent and linear voltage-controlled voltage sources, and ideal operational 
amplifiers. It does not require Monte-Carlo analyses, and it accounts for correlation among 
the inputs to the circuit. 

3.2    Statistical analysis of switched-capacitor circuits 

The analysis of switched-capacitor circuits using conventional simulation techniques is prac- 
tically impossible. For this reason, certain simplifying assumptions about the circuit are 
usually made in order to reduce the required computational effort to manageable levels. For 
instance, MOSFETS are modeled as ideal switches; moreover, it is assumed that all other 
elements in the circuit can be represented by linear capacitors, ideal operational amplifiers, 
and independent or linear voltage-controlled voltage sources. 

Various methods of analysis have been proposed for circuits of this kind [7, 8,9]. Broadly 
speaking, they all rely on equations resulting from the law of conservation of charge and on 
the branch constitutive equations of the memoryless elements. The analysis method used 
here is the one described in [8]: at each clock phase, the connected components of the 
circuit are built, each component consisting of nodes connected together by closed switches. 
The only elements that can connect two different components are capacitors or memoryless 
elements (voltage sources, op-amps). For each connected component, charge conservation 
equations can be written: the total charge present on all the capacitors connected to a given 
component immediately before the switching instant tk must equal the total charge present 
on the same capacitors immediately after tk plus the charge that has left the component 
through the memoryless elements. Thus for each connected component the corresponding 
charge conservation equation is: 

3 3 3 

where qf represents the charge on the j-th capacitor, and qj is the charge flowing through 
the j-th memoryless element. If the j'-th capacitor, Cj, is connected between nodes ji and 
j2, then qf = Cj(vjt - Vj2), and the charge conservation equation can be rewritten as: 

3 3 

3 

Branch equations for the closed switches and the memoryless elements are appended to the 
charge conservation equations. The resulting system has the form [8]: 

Y* v(tf) 
q(«fc) 

WfcvfoU) 
Eu(ifc) 

(3.1) 
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where v represents the vector of the node voltages, q the charges flowing through the mem- 
oryless elements, u the voltages of the independent sources, and tk is the k-th switching 
instant. Letting x* = [vT(#), qT(#)]T and uk = u(tk), eqn. (3.1) can be rewritten as: 

Yjtxjt   = W*v(*ti) 
0 + 0 

Eu(*fc) 

=   DfcXfc_i + Fufc, (3.2) 

for appropriate matrices D* and F. 
In most switched-capacitor circuits, the switching schedule is periodic: this implies that 

Yk+N = Yjt and Djt+jv = D* for some positive integer N. Furthermore, it will be assumed 
that the inputs to the circuit form a stationary process Markov process of order zero with 
mean ü and covariance matrix Q. Then taking the expected value of both sides of eqn. (3.2) 
yields: 

Yfcxfc = Dfcx*-,+Fü, (3.3) 

where x* denotes the mean of x*. Because the sequences {Yk} and {D*} are periodic of 
period N, so is the sequence {x*}. As a consequence, Xi,x2,... ,XAT can be computed as the 
solution of the following system of linear equations: 

YiXi   =   DXXAT + Fü 

Y2x2   =   D2X!+Fü 

or, in short: 

where x = [xf, x^. 

YNxN   =   DJVXAT-1 + FU, 

(Y - D)x = Fü, 

. xjv]T, ü = [üTüT... üT]T, and: 

F   =   diag(F,F...F) 

Y   =   diag(Y1,Y2...YiV) 

D2 

(3.4) 

D   = 

D N 

The dimension of Y - D is N • dim(Y*), and can therefore be quite large. Fortunately, 
because of the particular structure of Y — D, it is possible to decompose it using block LU 
decomposition. More precisely, let Y* = L^U*; then it is easy to verify that Y — D = LU, 
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where: 

L   = 

La 
-DaUr1 

-D3U2- -l 

U   = 

Uj 

u. 
u3 

-L^Da 
-L2-1D2Y1-1D1 

-LJ1D3Y2-1D2Y1-1D1 

U' N 

and 

L'JVU'W = Y AT = 
YN - DATY^DN-IY^ • • • Yr'ÜL 

Therefore, it is not necessary to decompose Y: the solution of eqn. (3.4) can be computed 
using simply the LU factors of Yi,..., Yjv-i and Y'jv- 

Similarly, let Pk be the covariance matrix of the random variable x*. The sequence {P*} 
is also periodic of period N, and it can be shown [10] that it satisfies the following difference 
equation: 

YkPkYl = DfcP^Df + FQFT. (3.5) 
A * 

Consequently, letting P = diag(Pi, P2 ... PN) and Q = diag(Q, Q ... Q), the matrix P can 
be computed as the solution of the discrete Lyapunov equation: 

A        A        A    m A        A        A     fp A^     A       A   rT> 

YPYT = DPDT + FQFT. (3.6) 

Eqn. (3.6) is linear in the entries of P, and in principle it could be solved using standard 
techniques, such as LU decomposition [11]. In practice, because the size of the system in 
eqn. (3.6) can be extremely large, it is advisable to compute the solution using special- 
purpose algorithms [12]. 

As will be shown in the next section, the estimation of the power dissipation requires 
also the computation of the expected value of (x* - xk)(xk-i - x*_i)T. Letting Pfc.fc-i = 
(xfc - Xjt)(xjt_i — Xfc_i)r, it can be shown, after some algebraic manipulation, that the fol- 
lowing relationship must be satisfied: 

YjtP^-^DfcPjk-x. 

Therefore Pfc,jt_i can be computed from P*_i simply by solving a system of linear equations. 
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Figure 2: Power Generated by an Element 

3.3    Power estimation 
The statistical information about the circuit variables, computed as described in the previous 
section, can be used to obtain probabilistic information about the circuit's power dissipation 
in the following way. By power conservation, the power dissipated by the circuit must be 
equal to the power delivered by the active elements, namely voltage sources and operational 
amplifiers. Consider a generic circuit element, as shown in Fig. 2. The current through the 
element, i{t), is always zero, except at the switching instants tk, when it becomes (theo- 
retically) infinite. Assuming that the interval [ta,tb] contains a single switching instant tk, 
i(t) = q{tk)S(t - tk), where q(tk) is the amount of charge that flows through the element at 
time tk, and S(-) is Dirac's impulse function. The energy delivered by the element at the 
switching instant tk is: 

J = q{tk) ftbv(t)S(t-tk)dt. 
Jta 

If the voltage v(t) is not discontinuous at tk, the integral in the expression above has a 
well-defined value, namely v{tk); in this case, the energy delivered by the element is: J = 
q(tk)v(tk). For example, let the element under consideration be an independent voltage 
source, Vm(t) be the source value, and qm be the variable describing the charge flowing 
through the source. Then the power delivered by that source over a clock period is: 

1   N 

1
   k=\ 

where Vm,k,qm,k are shorthands for Vm{tk),qm{tk), and T denotes the clock period. As a 
consequence, the expected value of the power delivered by the source is given by: 

Wm = i £ Vm,kqm,k. (3-7) 
T k=\ 

The evaluation of the power delivered by other active elements (controlled voltage sources 
and op-amps) is more difficult, because the voltage across them can have a discontinuity at 
the switching instants: in this case the value of the integral /£ v(t)S(t - tk) dt is not well- 
defined. Thus, in the case of a discontinuity in the voltage across the element, the energy 
delivered by the element at tk can be as high as: 

J = max(vk-i,vk)qk 
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and as low as: 
J = rain(ujt_i,Vfc)9fc. 

To avoid this uncertainty, an average value: 

vk-i + vk J = —r-qk 

can be used. It can be shown that this particular choice satisfies power conservation. 
Under this assumption, the average power delivered by the element is given by: 

Wm = ^ ^2(qm,kVm,k + 9m,fcVm,fc-l). (3-8) 

The quantities qm,kVm,k and qm,kVm,k-i are second-order moments, and can be obtained from 
the matrices P* and P*,jt-i defined in the previous section. For instance: 

qm,kVm,k = qm,kvm,k + (qm,k - q~m,k)(vm,k - Vm,k), 

and the last term in the equation above is an entry of the matrix P*. A similar identity, 
involving an entry of the matrix Pfc,/t-i, can be obtained for qm,kVm,k-i- 

3.4    Algorithm implementation 

Two things must be accomplished so as to implement the analysis method described in 
Section 3.2. First, the connected components of the circuit must be determined at each clock 
phase, and the charge conservation and branch constitutive equations must be numbered 
accordingly. Second, the system of equations (3.2) must be built at each clock phase from 
the circuit netlist. 

The determination of the connected components for an undirected graph is a well-studied 
problem and relatively feist algorithms exist to solve it. The treatment of this problem can 
usually be found in most introductory books on algorithms such as [13]. By using the 
heuristics of union by rank and path compression in the implementation, a practically linear 
running time can be obtained [13, p. 449]. Once the connected components have been found, 
determining membership in a set is a constant time operation, assuming that indexing into 
an array can be done in constant time. 

A unique numbering for the system of equations can easily be obtained by a slight 
modification to the pseudocode for the connected components presented in [13]. Initially, 
each connected component consists exactly of one node, and is assigned a the same number 
as the node. When two connected components are merged because they are joined by an 
edge (i.e. a closed switch), one of the two component numbers is assigned to the resulting 
connected component, while the other is assigned to the switch. When system of equations 
(3.2) is assembled, charge conservation equations are numbered according to the connected 
components, while each closed switch's number determines the number of the corresponding 
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branch equation. Branch equations for the other memoryless elements are appended as in 
ordinary Modified Nodal Analysis. This methodology yields a unique numbering scheme for 
all the equations in the system. 

Once the connected components have been identified, the system of equations can be 
built from the circuit netlist by relying on the usual concept of element stamps. 

3.5    Numerical results   . 
In order to facilitate the use of our power estimator, it was decided to interface it with an 
existing commercial CAD environment. Cadence's Design Framework II was chosen for this 
purpose. Design Framework II provides a set of tools, known as OSS, that allows third-party 
developers to incorporate their own simulators into the Cadence system. OSS provides an 
interface for the developer which allows the execution of a simulation, the generation of 
netlists and input vectors, and the display of simulations results which are consistent with 
the interface used by the other tools in the Design Framework II environment. 

The first step in integrating a simulator into the Design Framework II environment is 
the generation of a netlist in a standard format. The netlist is obtained by traversing the 
Cadence database to obtain relevant information about the circuit to be simulated. OSS 
provides two tools for automatic netlist generation: HNL and FNL. Both of these netlisters 
are capable of producing output in a user-defined format by utilizing the standard Cadence 
language, SKILL. 

In order to produce a netlist, it was necessary to choose a HDL. Several factors had to be 
considered in choosing a HDL. These factors included: portability, popularity among CAD 
tool users, availability of the language, and so on. The HDL that was finally chosen was 
VHDL-A. This is an analog extension to the digital language VHDL, which the 1076.1 IEEE 
Standards Subcommittee is currently developing a standard for. By utilizing the HNL of 
Cadence's OSS, a rudimentary VHDL-A netlister was developed. A parser for a subset of 
the VHDL-A language was developed to allow the simulator to read the resulting netlist. 

The simulator was used to calculate the expected power dissipation of a number of 
switched-capacitor circuits of varying sizes. In order to expand the library of benchmark 
circuits on which to test the power estimator, additional designs were sought from indus- 
trial sources. CADENCE contributed the design of a switched-capacitor elliptic filter. Texas 
Instruments was also contacted for the purpose of obtaining additional examples of switched- 
capacitor circuits to be added to the set of benchmarks. Texas Instrument agreed to provide 
one such circuit upon the signing of a nondisclosure agreement by Georgia Tech. Such agree- 
ment was signed, and we obtained from Texas Instruments the design of another switched- 
capacitor circuit, which has been added to the benchmark library. 

The clock frequency for each of these circuit was taken to be 1 MHz. The CPU times 
represent the running times of the simulator on a Sparestation 5/20 running SunOS 4.1.4. 
The results of these simulations can be found in Table 2: the second column shows the 
dimension of eqn. (3.4) for the corresponding circuit, while the expected power dissipation 
is reported in the third column. It is worth repeating that those figures represent only the 
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switching power dissipation of the circuit: in order to obtain the total power dissipation, one 
must add the power dissipated by the op-amps, which, as mentioned in the Introduction, 
can be taken to be a fixed value. 

Table 2: Results of Power Estimation Simulation 

Circuit 
Matrix 

Size 
Switching 

Power (/*W) 
CPU 

time (ms) 

SCAmp 14 1.500 250 
Biquad 44 137.8 310 
ElliptO 96 12.34 550 
Elliptl 60 5.189 350 
Ellipt2 66 .2594 340 

3.6    Summary 
An algorithm for statistical estimation of power dissipation in switched-capacitor circuits 
has been described. The proposed algorithm computes the mean and the variance of all 
variables of interest as the solution of certain sets of linear, algebraic equations. Therefore, 
no Monte-Carlo analyses or time-domain simulations of the circuit involved are required. A 
potential drawback is that the size of the system of equation that must be solved to compute 
P (eqn. (3.6)) can be very large, even for circuits of modest dimensions. On the other 
hand, this system of equations must be solved only once. For this reason, trying to keep the 
computational effort required to solve the system to a minimum is not as crucial as it is, for 
instance, in conventional circuit simulation, where the system must be solved hundreds or 
even thousands of times. Moreover, it may be possible to compute the solution using special 
algorithms that take advantage of the particular structure and of the sparsity of Y [14]. 

The algorithm also accounts for any correlation that may exist among the inputs to the 
circuit. This is in contrast to some of the published power estimation algorithms for digital 
circuits, which assume that the primary inputs to the circuit are statistically independent. In 
some cases, this may be an unrealistic assumption: for instance, when the inputs are signals 
generated by optical sensors that are part of an optical array. Power estimation algorithms for 
digital circuits that do not rely on the uncorrelation assumption usually require a significantly 
larger computational effort [2], while the algorithm described here allows the primary inputs 
to the circuit to be correlated without affecting the overall computational cost. 
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Chapter 4 

Power Dissipation and Switching 
Order 

4.1    Energy dissipation in switching circuits 

When simulating switched-capacitor circuits, a number of assumptions are usually made 
in order to reduce the computational effort required to manageable levels. The types of 
elements contained in the circuit are limited to linear capacitors, ideal operational amplifiers, 
independent or linear voltage-controlled voltage sources, and ideal switches. Moreover, it is 
assumed that the switch configuration changes instantaneously at each switching instant tk. 
As a consequence of those assumptions, it is possible to show that the voltages in the circuit 
are piecewise constant, changing values only at the switching instants; charge flow also occurs 
instantaneously at the switching instants, and is zero at any other time [8]. Mathematically 
speaking, this means that each branch current is represented by a series of Dirac's impulse 
functions located at the switching instants. 

Consider now a generic two-terminal element, such as the one shown in Fig. 3. The total 
energy dissipated by this element over the time interval [ta,tb] is: 

J= f"vdq= ["vidt. (4.1) 
Jta Jta 

Assuming that the interval [ta,tb] contains a single switching instant tk, the current through 
the element in Fig. 3 is given by: i(t) = qS(t - tk), where q is the amount of charge that 
flows through the element at time tk. If v is continuous at t*, the integral in eqn. (4.1) has 
a well-defined value, namely: 

J = qv(tk). (4.2) 

Instead, if v is discontinuous at tk (see Fig. 4(a)), the value of the integral is undetermined, as 
the following analysis shows. Suppose that v, instead of having a discontinuity at tk, changes 

-    V      + 

Figure 3: Power Dissipation in a Circuit Element 
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Figure 4: Discontinuity in a Branch Voltage 
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Figure 5: Computing the Energy Dissipated in a Switch 

continuously over the interval [tk - tx, tk + e2], as shown in Fig. 4(b). Depending on the values 
of ei and e2 and on how v(t) changes over [tk - eutk + e2], the integral Jj v(t)S(t - tk)dt 
can have any value between min(u(ifc ),v(f£)) and max(v(<ä), «('*))■ As a consequence, the 
integral has no well-defined limit when cx and e2 tend to zero. This means that in order to be 
able to evaluate the energy dissipated by an element, whose branch voltage is discontinuous 
at the switching instants, a more in-depth analysis of the circuit is required. 

A good starting point is provided by the very simple circuit shown in Fig. 5: a capacitor 
connected in parallel to a switch. The switch is open for t < tk, and it closes at t = tk. To 
simplify notation, vi(tk) (the value of voltage Vi immediately before tk) will be denoted by 
uf; similarly, vf = v^tf) (in this example, vf = 0).  Before t = tk, the energy stored in 

the capacitor is -Civ^2; after t = tk there is no energy in the capacitor, which means that, 
2 1       _2 . 

when the switch closes, it dissipates an amount of energy equal to -C1v1  . Noting that the 

charge qt that flows through the switch at t = tk is equal to Ciuf, the amount of energy 
dissipated in the switch can be expressed as: 

,      1   _ J = -vx qi. (4.3) 

This suggests that, if the element in Fig. 3 is a switch, the energy dissipated when the switch 
1 

closes is given by J = —v q. 
The analysis of a more complex example, such as the one shown in Fig 6, reveals some 

pitfalls with this expression for the energy dissipated in a switch. First, consider the case in 
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Figure 6: Two switches closing at the same time 

which both switches close at the same time. A simple analysis shows that: 

9i   =   CiVi + C2V2 

q2   =   C2V2 

According to eqn. (4.3), the energy dissipated in the switches is: 

1   _ 1^   -2     1^   - - 
«A   =   2Vl qi = 2      l       2      x V* 

h   =   2^2" - ur)92 = 2°2V22 ~ 2C2V^V^ 

_2 Note that Jx + J2 = \C\v\- + \C2V2 , which means that the principle of energy conservation 
is satisfied. On the other hand, either J\ or J2 could be negative, which would indicate that 
one of the switches would be generating energy: this, of course, is physically impossible. 

To gain further insight into this problem, let us compute the energy dissipated in the 
switches when they close not simultaneously, but one before the other. If S\ closes before 
5a, it is immediate to verify that: 

9i = cw 
92 

Ji 

=   C2U2" 
1    -            1^-2 

=   = 2Ui 91 = 2   lVl 

J2 
1  -         lr   -2 

=     = ör2 92 = 0^2^    > 

where v\~ and uj refer to the voltage values before either switch closes, and qi and q2 denote 
the charges flowing through the switches at the instant when the switch is closed. If S2 closes 

first, vi and v2 settle at an intermediate value v —    * * 2   while Si is open and S2 is 
C/i + C-2 

closed. As a consequence, qi,q2,Ji and J2 are given by the following expressions: 

9i 

92 

dv\~ + C2v2 

CIC2 

C1+C2 
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Figure 7: The switching order affects energy dissipation 

1 1 (Civ^ + C^Y 

1/   - -\ 1     ClC2    /   _ -\2 
J2 = 2{V2-Vi)q2 = 2c^c;{V2~Vi) 

It is immediate to verify that, in either case, Jx and J2 are positive, as should be expected. 
With some algebraic manipulation, it can also be verified that energy is conserved, regardless 
of the order in which the switches close. On the other hand, the energy dissipated in a 
particular switch does depend on the switching order, even if, in this particular example, the 
total energy dissipation is the same in both cases, as it is equal to the energy initially stored 

in the capacitors. > 
That this is not always the case can be seen from the example shown in Fig. 7. This 

circuit contains a voltage source, which is an active element: let J3 be the energy dissipated 
by it. If Si closes before S2, a charge: 

C2C3        .     _ _x 
q3=c7Vc3^-V2) 

flows through the voltage source when Si is closed; at the same time, the voltage across the 
source drops from uj - u2" to zero. According to eqn. (4.3), the energy dissipated by the 

source is: inn 
1     U2O3    /   _ _\2 

Additionally, v2 and v3 settle at an intermediate value given by: 

_      C2V2 + dv3 
C2 + Cz 

When S2 closes, the charge q2 that flows through the switch is equal to: 

q2 = {C2 + C3)v = C2U2" + C3V3 • 

As a consequence, the energy dissipated by each element is as follows: 

T *rr   -2 

Ji   =   lf\vi 
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-\2 1 (C2V2  + C3Vs) 

1        C2C3       ,     _ _s2 

All elements, including the voltage source, dissipate energy, and the total amount of energy 
dissipated is equal to the energy initially stored on the capacitors; thus, once again, energy 
is conserved. 

If S2 closes first, the voltage across the voltage source remains equal to Av^. Letting 93,2 
be the charge that flows through the source at this time, and J3,2 the corresponding energy 
dissipated by the source, one obtains: 

93,2   =   C3V2 

J32    =    Av^q3,2 = AC3V1V2. 

When Si closes, the voltage across the source drops to zero, while more charge flows through 
it. An easy calculation shows that the amount of charge flowing through the source and the 
corresponding energy dissipation is given by: 

93,1   =   C3AV1 
1 / \2 

J3,i   =   2C3\Avi)  ' 

Thus, the energy dissipation in each element is: 

J2 = \(C2 + c3)v;2 

J3     =     «73,1 + ^3,2= 2C3AV1(AV1+2V*)- 

Although the principle of energy conservation is still satisfied, in this case the value of J3 

can be negative. If so, the voltage source would be delivering energy, and the total energy 
dissipated in the switches would be greater than the energy initially stored in the capacitors. 
In a physical realization of this circuit, any energy delivered by the voltage source would 
have to be drawn from a power supply. This means that, if S2 closes before Si, the circuit 
will draw energy from the power supply, while this does not happen if Si closes before S2. 
Thus, this example shows that the switching order can affect the power dissipated by a 
switched-capacitor circuit. 

In all the examples examined so far, when the switches were closed one at a time, 
eqn. (4.3) always yielded a positive value for the energy dissipated in each switch. Un- 
fortunately, this is not always the case, as can be seen by analyzing the network shown in 
Fig. 8(a). It is immediate to verify that: 

qi   =   CW 
1 1 2 

•A   =   g^i" " V^qi = 2Cl(1 " A)Ul~ * 
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Figure 8: Negative Energy Dissipation in a Switch 

Thus J\ < 0 if A > 1. A reason for this nonphysical result can be surmised by replacing the 
switch with a resistor, as shown in Fig. 8(b). It can readily be seen that the behavior of this 
circuit is described by the following differential equation: 

vi + ^r(l - A)v* = 0» 

which is unstable if A > 1. This observation leads to the conjecture that eqn. (4.3) will 
always yield a positive value for the energy dissipated in a switch whenever the network, 
obtained by replacing the switch with a positive resistor, is stable. 

The results obtained from the analysis of the examples in Figs. 5 through 8 can then be 
summarized as follows: 

• The expression for the energy dissipated by an element, given in eqn. (4.3), appears to 
be consistent with the principle of energy conservation. 

• If the analysis is carried out under the assumption that multiple switches close at the 
same time, eqn. (4.3) can yield a negative number for the energy dissipated by a switch, 
which is physically impossible. 

• A more realistic assumption about the operation of a switched-capacitor circuit is that 
the switches close one at a time. In most cases, this leads to the physically correct 
result of positive energy dissipation in the switches. 

• Examples can be found, however, in which eqn. (4.3) still yields a negative value for the 
energy dissipated in a switch, even if only one switch is closed. It is conjectured that 
this is an indication that the circuit obtained by replacing the switch with a positive 
resistor would be unstable. 

• If active elements are present in the circuit, the total power dissipation can depend on 
the order in which the switches are closed. 

Formal statements of some of these results, and mathematical proofs of their validity, 
will be presented in the next section. 
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4.2    Energy conservation 

In this section, some of the properties observed in the examples analyzed in the previous 
section will be stated formally and proven mathematically. The first step is to extend 
eqn. (4.3) to the case when v+, the voltage across the element at time t%, is not zero. The 
formula must be extended so that it reduces to eqn. (4.2) when v~ = v+, and to eqn. (4.3) 
when v+ = 0. These considerations lead to the following expression for the energy dissipation 
in an element: 

J = - q. (4.4) 

The correctness of this formula is corroborated by the fact, which will be proven next, that 
the principle of energy conservation is always satisfied if the energy dissipated in each element 
at switching instant tk is computed according to eqn. (4.4). 

Consider a generic switching circuit containing c linear capacitors and m memoryless 
elements (switches, independent voltage sources, linear voltage-controlled voltage sources 
and ideal operational amplifiers); let n be the number of nodes in the circuit (excluding 
the ground node). Let A be the circuit's node-branch incidence matrix, with the branches 
numbered so that the first c columns of A correspond to the capacitors and the last m to 
the memoryless elements. Then A can be partitioned as: 

A = [Ac AmJ , 

where Ac and Am are n x c and n x m matrices, respectively. 
Let qc = [gi,...,<7c]T be a vector containing the charges stored in the capacitors, and 

let qm = [qc+1,...,qc+m]T be another vector containing the charges that flow through the 
memoryless elements at switching instant tk. Similarly, let ec = [ei,...,ec] and em = 
[ec+i,...,ec+TO]T be vectors containing the branch voltages across the capacitors and the 
memoryless elements, respectively. Finally, let v = [vu..., vn]T be the vector of the node 
voltages, and define: 

q+ = 
q+ 

Theorem 1   With the variable definitions given above, the following equality holds: 

\efdt + \(*tT + extern = ^C-Tqc-, (4-5) 

where superscripts + and - denote variable values immediately before and after the switching 
instant, respectively. 

Proof 1  Charge conservation at each node implies that: 

X>i + £</m,;,- = £<£;, (4-6) 
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Figure 9: Charge Conservation Equations at a Node 

where qCtj and qmj represent the charge stored on the j-th capacitor, and the charge flowing 
through the j-th memoryless element, respectively (see Fig. 9). The set of n charge conser- 
vation equations can be written in vector form as: 

Aq+ = Acq+ + Amqm = AcqJ. 

From this equation and from e+ = ATv+, one obtains: 

>tW + e+Tq 

Similarly: 

But: 

*-T„+ _T 

= e+V = v+TAq+ = v+TAcq; = efqj. 

-Tn+_-Ti qj + e;qm = e    qT = v 
_T Aq+ = v~  AcqJ = ec q'c 

.+ ..-  _--T„+ 

(4.7) 

(4.8) 

et <Ü = £<j9c,; = Y,et£iecj = X>iecj = ec~ q| 

Therefore, combining eqns. (4-7) and (4-8) yields: 

£ qc+em qm 
_T   _ _T 

qc ~em q m   Mm» 

or, equivalently: 

which proves the theorem. 

e+Tq^ + (e+T + em
T)qm = ec 

TqJ, 

Note that |e+Tq+ = £j jCj-CcJy)2- Therefore, this term represents the energy stored 
in the capacitors at t%, i.e., immediately after switching instant **. Similarly, the term 
Iej

TqJ is the energy stored in the capacitors at i£. Finally, according to eqn. (4.4), the 
term £(em

T + e~T)qm represents the total energy absorbed by the memoryless elements at 
tk. Thus, Theorem 1 states that using eqn. (4.4) to compute the energy dissipated by the 
memoryless elements satisfies the principle of conservation of energy. 

The analysis of the network of Fig. 8(a) showed that, even if only one switch is closed, 
eqn. (4.3) could yield a negative value for the energy dissipated in the switch. It will be 
now proven that this cannot happen if the network obtained by replacing the switch with 
a positive resistor is stable. For this purpose, let v~ be the vector of the node voltages 
identifying the state of the switch-capacitor network of Fig. 10(a) before the switch is closed. 
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Figure 10: Replacing a switch with a resistor 

It will be assumed that v~ is the quiescent bias point of the network of Fig. 10(a) when 
the switch is open. This means that v~ satisfies the branch equations of all the memoryless 
elements, except that of the closed switch. After the switch closes, the new state of the circuit 
can be found by writing a set of charge conservation equations, as in eqn. (4.6). Expressing 
the charges on the capacitors in terms of the node voltages, the charge conservation equations 
take on the following form: 

Cv+ + Amqm = Cv-. 

The set of branch constitutive equations for the memoryless elements can be written as: 

hT 

v+ = BTv+ = 

Without loss of generality, it can be assumed that the last equation in this set, b^v+ = sm, is 
the one for the closed switch (vf — vf = 0). Combining these two sets of equations together 
yields the following system [8, 15], which determines the state of the network at tf: 

C    Ar 

BT 
Cv" 

s 
(4.9) 

For notational convenience, it has been assumed that qm,m, the charge flowing through the 
switch when it closes, is the last entry in qm. Because v~ is the quiescent bias point of the 
network before the switch closes, it satisfies all but the last of the branch equations of the 
memoryless elements: 

bf v~ = Si, i = l,...,m — 1. 

Consider now the network of Fig. 10(b), in which the switch has been replaced by a 
resistor, and assume that v~ is the state of the network at t = 0. The following theorem 
shows that the evolution of this network for t > 0 is related to the solution on eqn. (4.9). 

Theorem 2 There exists a constant a such that the voltages and currents in the network of 
Fig. 10(b) are given by: 

v(t) + V" — V+ 

-aq™ 
„at (4.10) 

where im is the vector of the currents through the memoryless elements in the network. 
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Proof 2 Fort> 0, the evolution of the network of Fig. 10(b) is determined by the following 
systems af algebraic-differential equations: 

C Am l f v i _ r o 
-R J   [ im J [S 

(4.11) 

where R = diag(0, ...,0,R). Using the expressions for v(t) and im(t) from eqn. (4-10), one 

obtains: 
Cv + Amim = oC(v- - v+)e°" - aAmqmeot = 0, 

or: 
(4.12) C(v+ - V) + Amqm = 0. 

The second equation in (4>U) becomes: 

BTv+ + BT(v" - v+)eat + aRqmeat = s, 

which is equivalent to: 
BT(v+ - v") - aRqm = 0. 

Thus \(t), im(t) given in (4.10) are the solution of eqn. (4.11) if and only if the following 
equation is satisfied: 

(4.13) 

C     Am 

BT   -aR 
v+ — v 

qm 
= D(a) 

v+ _ v" 

qm 
= 0. (4.14) 

This equation has a nonzero solution if and only t/detD(a) = 0; because of the particular 
structure of R, detD(a) = 0 is a first-order polynomial equation in a (as can be seen 
by developing detD(a) along the last row of the matrix). Assuming that a is indeed the 
solution of this equation, it remains to verify that eqns. (4-12) and (4.13) are satisfied. 
Equation (4.12) is satisfied because it is equivalent to the first equation in (4.9). The first 
m — 1 equations in (4-13) are satisfied, because: 

bfv+ = Si = bfv~, i = l,...,m-l. 

This means thatn + m-1 equations in (4.14), out ofn + m, are satisfied. But detD(a) = 0 
implies that the equations in (4.14) are not independent. Therefore, if the first n + m-1 
are satisfied, the last one must be, too. 

Corollary 1 If the network of Fig. 10(b) is stable, the energy dissipated in the memoryless 
elements between t = 0 and t = +00 is given by eqn. (4.4). In particular: 

that is, eqn. (4.4) yields a nonnegative value for the energy dissipated in the switch. 
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Proof 3 As a consequence of Theorem 2, every branch voltage in the network of Fig. 10(b) 
has the following expression: 

v(t) = v+ + (v- - v+)eat, 

while the expressions for the branch currents through the memoryless elements are given by: 

i(t) = -aqeat. 

Therefore the energy dissipated in any memoryless element is: 

J = j      vidt = j      [v+ + (v- - v+)eat](-aqeat) dt = v+q + (v~ - v+)| = - q. 

In particular, if the element is resistor R, then vi = Ri2
mtm, v+ = vf - vf, v~ = 0 (because 

v~ represents the voltage across a closed switch), which completes the proof. 

Corollary 1 provides an additional proof that eqn. (4.4) satisfies the principle of conser- 
vation of energy, even if it is only valid when the network of Fig. 10(b) is stable. In this 
case, the corollary also shows that eqn. (4.4) will always yield a positive value for the power 
dissipated in a switch, if only one switch is closed at a time. 

4.3    Power dissipation versus switching order 

4.3.1    A graph problem 

Theoretically, all the switches in a switched-capacitor circuit that are connected to the same 
clock phase close at the same instant. Of course, this is not the case in practice. The examples 
analyzed earlier show that the order in which the switches close can affect the circuit's power 
dissipation. In general, this order will be affected by factors, such as parasitic capacitances, 
length of clock lines, and so on, which are impossible to predict or control. As a consequence, 
it is impossible to predict with certainty the power dissipated by a switching circuit. A more 
realistic estimate can be obtained by trying to compute a range of values, within which the 
circuit's power dissipation must fall, regardless of the switching order. This leads to the 
problem described below. 

At each clock phase, consider the switches that will close during that phase. Assuming 
that the switches close one at a time, determine the order which leads to the maximum (or 
minimum) power dissipation in the circuit. 

This problem can be represented on a graph in the following way: let s be the number 
of switches connected to the clock phase under consideration. The state of each switch 
can be represented by a bit: for example, zero for an open switch, and one for a closed 
switch. Correspondingly, any configuration of the switches is represented by a binary string 
containing s bits. There are 25 possible switch configurations which, represented as binary 
strings, form the vertices of an s-cube.  Each cube edge corresponds to the closing of one 
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(001) 

Figure 11: The graph representing all possible switching orders 

switch; because it is assumed that the switches, once closed, do not reopen, each edge can 
be traversed in only one direction. Thus, the vertices and the edges of the s-cube form a 
directed graph, such as the one shown in Fig. 11. 

Each edge in the graph can be assigned a weight, which is the power dissipated by the 
circuit when the switch corresponding to that edge is closed. Initially, all the switches are 
open, which is the configuration corresponding to the (00... 0) vertex in the cube. Even- 
tually, all the switches are closed, which means that the final configuration is the (11... 1) 
vertex. Thus, finding the switching order that minimizes (maximizes) the circuit's power 
dissipation means finding the shortest (longest) path from O = (00... 0) to D = (11... 1) 
along the cube, where the length of a path is measured as the sum of the weights of the 
edges contained in the path: in graph theory, this is known as the single-source shortest paths 
problem. This is a well-known problem, and a number of algorithms exist to solve it [16]. 
Because the graph arising in this specific problem is obviously acyclic, the simplest way to 
find the shortest and longest paths from 0 to D is to traverse the graph in topological order, 
in which each vertex is visited only after all its predecessors have been visited. This traver- 
sal is made even simpler by the structure of this particular graph, and can be implemented 
using a queue, as shown in Fig. 12. The quantity W(vi,v2) is the weight of the edge joining 

Place O = (00... 0) on Queue; 
while Queue ^ 0 { 

Longest(v, O) — max{W(v,p) + Longest(p, O) : p is a predecessor of v); 
Shortest(v, O) = mm{W(v,p) + Shortest(p, O) : p is a predecessor of v}; 
foreach successor s of v { 

Compute W(s, v); 
Add v to Queue; 

} 
} 

Figure 12: Computation of shortest and longest paths 

vertices vi and u2, that is, the power dissipated by the circuit when the switch corresponding 
to that edge is closed. Obviously, D is the last vertex to be visited, and Longest(0, D) and 
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Shortest(0, D) give, respectively, the maximum and minimum power that can be dissipated 
by the circuit under all possible switching orders. 

4.3.2    Computing the edge weights 

The determination of the edge weights requires computing the values of the voltages and 
charges in the circuit when a particular switch is closed. This means that a system of linear 
equations must be solved for each edge in the graph; since there are s2*_1 edges in an s-cube, 
in principle this would entail performing s2a_1 matrix LU decompositions. By exploiting the 
particular structure of the problem, the number of LU decompositions can be reduced, as 
explained below. 

Each vertex in the s-cube is identified by a certain set of closed switches; an edge leading 
out of that vertex corresponds to closing one of the remaining open switches. The new state 
of the circuit, after the switch's closure, is determined by the solution of eqn. (4.9). If the 
last unknown is gm,m (the charge through the closing switch), and the last equation is the 
one for the closed switch, then the set of equations in (4.9) has the following form: 

1 

-1 

1 1 

x 
9ro,m 

To 
0 

(4.15) 

where entries 1 and -1 in the last row and column of the coefficient matrix corresponds to 
nodes i and ,;' (see Fig. 10(a)). 

The coefficient matrix in eqn. (4.15) has the form: 

Y    v 
WT    z 

If Y = LU is the LU decomposition of Y, it is immediate to verify that: 

(4.16) Y    v 
T 

WJ      Z 
= 

L 
1T   1 

U   u' 
t 

where: 

Lu   =   v 

UT1   =   w 

t   =   z-lTu 
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Then the solution of eqn. (4.15) can be computed by forward elimination and back substi- 
tution: 

Lx0   =   r0 

q0   =   -lTx0 

qm,m     =     W* 
UX    =    X0 - ?m,mU. 

For a given cube vertex, each outgoing edge corresponds to closing a different switch: 
everything else in the circuit remains unchanged. This means that the specific switch being 
closed will affect only the last row and column of the coefficient matrix in eqn. (4.15). As a 
consequence, the LU decompositions of all the matrices corresponding to the edges leading 
out of the same vertex can be performed through eqn. (4.16). This reduces the number of 
LU decompositions to be performed to one per vertex, that is, 2s for an s-cube. 

4.4 Numerical results 
The described in the previous section was used to calculate the power dissipation of a number 
of switched-capacitor circuits of varying sizes. The circuits ranged from a simple amplifier 
to various types of elliptic filters. The clock frequency for each of these circuit was taken 
to be 1 MHz. The results of these simulations can be found in Table 3: the second column 
shows the dimension of eqn. (4.5) for the corresponding circuit, while the the third and fourth 
columns report the minimum and maximum power dissipation, respectively. The CPU times 
represent the running times of the simulator on a Sparestation 5/20 running SunOS 4.1.4. 

It is worth pointing out that the figures reported in Table 3 represent only the switching 
power dissipation of the circuit, that is, the power dissipated in charging and discharging the 
capacitors. In a physical circuit, an additional source of power dissipation is the static power 
absorbed by the operational amplifiers, which is not included in the ideal op-amp model. 
The computation of this power is trivial, as it is equal to the supply voltage times the bias 
current drawn by the operational amplifiers. Adding this value to the switching power given 
in Table 3 yields the total power dissipation of the circuit. 

4.5 Summary 
This chapter has explored a number of issues related to the evaluation of the power dissipated 
in a switching circuit. It has been shown that the formula normally used to compute the 
power dissipated in an element can be extended to the case when the current through the 
element is a Dirac impulse, and the voltage across the element is discontinuous. It has also 
been proven that such extension satisfies the principle of conservation of energy. 

The analysis of a number of selected switched-capacitor circuits has shown that caution 
must be exercised in the computation of power dissipation, because the assumption that two 
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Table 3: Effect of Switching Order on Power Dissipation 

Circuit 
Matrix 

size 
Min. 

power (/xW) 
Max 

power (/uW) 

SCAmp 14 1.1 1.3 
Biquad 44 138 151 
ElliptO 96 9.34 15.5 
Elliptl 60 5.2 7.6 
Ellipt2 66 .29 1.34 

or more switches close at the same time can lead to nonphysical results. This difficulty does 
not occur if the switches are closed one at a time; in this case, however, it has been shown 
that the power dissipation is affected by the switching order. This observation raises the 
question of how to compute the maximum and minimum power that can be dissipated by a 
switching circuit. 

It has been demonstrated that this is equivalent to the problem of finding the shortest and 
longest paths between two points in a weighted directed graph (the so-called single-source 
shortest paths problem). Because the graph that arises in this particular instance is acyclic, 
the shortest and longest paths can be found simply by traversing the graph in topological 
order. Most of the computational effort is spent in determining the edge weights, which 
correspond to the power dissipated in the circuit when a particular switch is closed. The 
computation of each edge weight requires the solution of a system of linear equations, and 
it has been shown that the computational effort can be reduced by exploiting the particular 
structure of the coefficient matrices of those systems. Finally, the algorithm has been tested 
on a number of switched-capacitor circuits. 
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Chapter 5 

Power Estimation in 
Continuous-Time Circuits 

5.1    Mathematical Framework 
The behavior of a time-invariant lumped-element circuit is completely characterized by the 
following Modified Nodal Analysis (MNA) equations [17]: 

x = -f(x) + u, (5.1) 

where x is the state vector (capacitor charges and inductor fluxes) and u is the vector of 
inputs to the circuit (represented by independent sources). The goal is to obtain information 
about the statistics of x (e.g., its mean and covariance matrix) from corresponding informa- 
tion about u. For this purpose, the inputs to the circuit will be modeled as a Wiener process 
with mean 0 (if the mean of the inputs is not 0, we write u = ü + ü, where ü is the mean 
of u, and we define a new function f (x) = f (x) + ü ). Under these assumptions, it can be 
shown [10] that x(*) is a realization of a Markov process whose probability density p(x.,t) is 
a solution of the Fokker-Plank equation: 

dt 
f(x)j»+iv.(Qp)' 

dp 
Because we are only interested in the stationary distribution of x, — = 0 and the above 

equation becomes: 
0 = V.[f(x)p+±V-(Qp)]. (5.2) 

In general, the solution p(x) of the above equation cannot be expressed in closed form. 
However, an approximate solution can be computed numerically as explained below. The 
method is better understood by examing first the simple case when f is a linear function of 
the form f (x) = Ax. Then eqn. (5.2) becomes: 

V.[Axp+iv.(Qp)]=0, (5.3) 

or, in short: 
Fp = 0, 
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where T denotes the Fokker-Plank operator on the left-hand side of eqn. (5.3). Let io0(x) = 
e-*(x)j where ^(x) = |xTP-1x, and P is the solution of the equation: 

AP + PAr = Q. (5.4) 

It can be shown that u>0(x) satisfies eqn. (5.3). Therefore p(x) = cow0(x), with CQ chosen 

so that Ip(x)dx = 1, is the solution of eqn. (5.2) when f(x) = Ax, i.e., when eqn. (5.1) 

is linear. This shows that the probability distribution of all voltages and currents in a linear 
circuit can be expressed in closed form. In particular, the probability distribution is gaussian 
with covariance matrix P. Thus, the statistical distribution of all voltages and currents in a 
linear circuit is determined completely by the solution of eqn. (5.4), which is a set of linear 
algebraic equations in the entries of P. Numerous methods for the solution of eqn. (5.4) have 
been published in the literature [18, 19]. 

If the circuit is nonlinear, the solution p(x) of eqn. (5.2) cannot be expressed in closed 
form. However, relying on the knowledge of the expression for p(x) found in the linear case, 
an approximate solution can be computed numerically in the following way. Let: 

f (x) = A(x - x0) + r(x), 

Of 
and Xo is a solution of be a first-order series expansion of f around Xo, where A =   _ 

Xo 

the equation f (x) = 0. Without loss of generality, we can assume that x0 = 0 (otherwise it 
can be made so by a translation of the reference system, which leaves eqn. (5.2) unchanged). 
Then eqn. (5.2) can be rewritten as: 

V • \AXP + l-V • (Qp)] = -V • [r(x)p], (5.5) 

or, in short: 
^=-V.[r(x>]. (5.6) 

An approximate solution of eqn. (5.6) can be computed by using a series expansion for 
p(x) [20]: 

P(X) = Z) CnMni*) = S C„tüo(x)MX)> (5-7) 
n n 

where the functions hn(x) are Hermite polynomials of increasing order. It can be shown that 
the functions ion(x) are eigenvectors of the Fokker-Plank operator F, i.e., that: 

Fwn = Xnwn. 

Therefore substituting the series expansion from eqn. (5.7) in eqn. (5.6) the following equa- 
tion is obtained: 

£}c„Anu;n(x) = -V • [r(x)p]. 
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The coefficients c„ must satisfy the following relationships [20]: 

cilAn = -/v.[p(x)pK(x)Ac, (5-8) 

where the functions vn(x) are the eigenvectors of the adjoint of the Fokker-Plank operator 

TTvn = Anun. 

Using Stokes' theorem, it can be shown that: 

- / V • [r(x)p]t>n(x) dx = J p < r(x), Vun(x) > dx, 

so that eqn. (5.8) can be rewritten in the following form: 

CnA„   =   Jp<r(x),Vvn(x)> dx = 

=   ]£ <>k I wk{x) < r(x), Vun(x) > dx = £ ckakn. (5.9) 
k * 

The values of the coefficients akn can be computed by numerical integration: 

ofcn = J wjk(x) < r(x), Vun(x) > dx. 

If the series expansion for p(x) is truncated after a finite number of terms, eqn. (5.9) translates 
into a set of linear equations: 

A0co   =   aooCo + aioCi + ... + amCN 
AiCi   =   aoico + anCi + ... + amCN 

XNCN   =   aojvco + aiNCi + ... + ajvwcjv 

The solution to this set of linear equations, together with the requirement that J p{x) dx = l, 

determines the values of the coefficients c„. Once the coefficients c„ are known, it is easy to 
obtain any statistical parameter of the random variable x. For instance, the mean x can be 
computed by evaluating the following integral numerically: 

X =   / Xp(x) dx=^2Cnj XWn(x) dX 

(this value of x should be interpreted as a correction to x0, which gives a first-cut approxi- 
mation of the mean of x, based on a linear approximation of f (x)). 

In conclusion, even when the circuit is nonlinear, the computation of the approximate sta- 
tistical distribution of the circuit voltages and currents can be performed in a straightforward 
way. In addition to the computation of the matrix P, the only other required operations 
are numerical quadrature (to evaluate integrals) and the solution of an additional set of 
linear equations to compute the coefficients c„. Therefore, the method described above is an 
efficient and reliable approach to the problem of power estimation in analog circuits. 
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5.2    Numerical Solution of the Fokker-Plank Equation 

Given the ordinary differential equation: 

x = -Ax + u, (5.10) 

the associated stationary Fokker-Plank equation is: 

V.[AXJ>+^V-(QP) = 0. (5.11) 

We want to find the eigenvalues, An, and the associated eigenfunctions, pn, of this equation, 
that is, the solutions of the following partial differential equation: 

Axpn + -V • (Qpn) = KPn- 

We will show that the eigenfunctions can be expressed as: 

pn(x) = e-*Wi/n(v
Tx), 

where t/^x) = §xTP_1x, P is the solution of the Lyapunov equation: 

AP + PAT = Q, 

and Hn(-) is an Hermite polynomial of order n. 
Let ^n(x) = #n(v

Tx), so that pn = t~^<j>n. Then: 

V • p = -^„e-^x + e"^V • <j>n = 
-PnP^x + e-^V • <j>n. 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

Since V • (Qp„) = QV • pn, we have: 

V-[AxPn + iv-(Qj>„)   = 

V • [Axpn - ^„QP-'x + ie-^QV • <£„] = 

V • [Pn (A - iqP"1) x] + \V • [e-^QV • <f>n]. (5.16) 

But V • (/w) =< V • /, w > +/V • w, therefore: 

V.[P„(A-IQP-
1
)X] = 

< -^e-^P^x + e-*V • <j>n, (A - ^QP"1) x > +P„tr (A - ^QP"1) •   (5-17) 
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But < ^„e-^P^x, (A - iQP"1) x >= 0, because: 

< P^x, (A - IQP-
1
) >   =   < x, (P-1 A - IP"1 AP"1) x > (5.18) 

< x, (p-iA - ip^AP"1)x >   =   <x,(ATP-1-ip-1QP-1)x>. (5.19) 

Combining eqns. (5.18) and (5.19), one obtains: 

< P-'X, (A - IQP-
1
) >= \ < x, (P^A + A3*"1 - P^QP-1) x > . 

But: 

P"JA + A7?'1 - P-'QP-1 = P_1(AP + PAT - Q)P_1 = 0, 

which proves the claim. 
Similarly, tr (A - |QP_1) = 0, because: 

tr(A-^QP-x)   =   ^(AP-^^P-
1
) 

tr(AP)   =   tr(PAT) 

tr(AP-iq)   =   itr(2AP-Q) = 

itr(AP + PAT - Q) = 0. 

As a consequence, eqn. (5.16) becomes: 

V • [AXP„ + -V • (Qp„) = 

c-* < V • <j>n, (A - iqp-1) x > --e"* < P-'x, QV • <£n> + 

\t~+V • [QV • <j>n) = 

e~* < V<£n, (A - QP-1) x > +^V • (QV • <f>n). (5.20) 

But: A - QP-1 = (AP - Q)P"a = -PATP-a, so that: 

V-[Axpn + iv-(Q/>„)] = 

-e"* < P-'APV • <£„,x > +\e~*V • (QV • <f>n), (5.21) 

and eqn. (5.12) becomes: 

ie^V • (QV • <j>n) - c-* < P"1 APV • <£„,x >= A„e-*^„, 
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or, equivalently: 

5V • (QV •<£„)-< P-aAPV • <£„,x >= Xn<j>n. (5.22) 

Since ^„(x) = Hn(< v,x >), we have: 

V-<f>n   =   vH'n 

V-(QV.^«)   =   <Qv,v>#;'. 

Let v be an eigenvector of P_1AP, namely: P_1APv = fix.   Then eqn. (5.22) can be 
rewritten in the following way: 

or, equivalently: 

- < Qv,v > H'^-fK v,x > H'n = A„#„, 

//« - 2—Ü < v, x > H'n - 2       *"       Hn = 0. (5.23) 
<Qv,v> n       <Qv,v> 

Since the n-th Hermite ploynomial satisfies the differential equation: 

HZ(t)-2tH'n(t) + 2nHn(t) = 0, 

the function pn(x) = e_^x)i/n(< v,x >) is an eigenfunction of the Fokker-Plank equation 
if we choose: 

<Qv,v>   =   (i 

An   =   —nfi. 
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Appendix 

1    Sample SKILL File for HNL Netlister 
; This function prints out the line for an NMOSfet element. It is used by 

; the element 'nmos' in sample circuit. 

procedure( hnlCktsimPrintNMOSfetElementO 

let( ( tmpStringO ) 
sprintf( tmpStringO 

"  nm'/.s: nmos generic map C/,s, '/.s)" 
hnlMapInstName( hnlCurrentlnstName ) 

hnlCktsimGetPropVaK "w" ) 
hnlCktsimGetPropVaK "1" ) 

) 
hnlPrintStringC strcat( tmpStringO "\n" ) ) 

t 

) 
let( ( tmpString ) 

sprintf( tmpString 
"\t  port map (D => '/.s, G => */.s, S => '/.s, B => */.s);" 

hnlCktsimNetOnTerm( "D" 0 ) 
hnlCktsimNetOnTerm( "G" 0 ) 
hnlCktsimNetOnTerm( "S" 0 ) 
hnlCktsimNMOSBulkNetName 

) 
hnlPrintStringC strcat( tmpString "\n" ) ) 

t 

) 
) 

; This function prints out the model statement for a mosfet model. It is 

; used by elements 'nmos', 'pmos' in the sample circuit. 
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procedureC hnlCktsimPrintMOSfetModel() 
hnlPrintString O'mosfet model\n") 

let( ( tmpString ) 
if( hnlIncrementalMode 
then sprintfC tmpString ".model */,s '/.s" 

hnlCktsimUniqueBlockNameC hnlCurrentMaster ) 
hnlCurrentMasteiOmodelType ) 

else sprintfC tmpString ".model */.s '/.s" 
hnlCktsimUniqueBlockNameC hnlCurrentMaster ) 
hnlCurrentMaster~>modelType ) 

) 
hnlCktsimSprintf ( tmpString "*/.s gamma=y.s" tmpString 

hnlCktsimGetPropVaK "gamma" ) ) 

hnlCktsimSprintf ( tmpString "'/.s lambda=y.s" tmpString 
hnlCktsimGetPropVaK "lambda" ) ) 

if( hnllncrementalMode 
then fprintf( hnllncludeFile strcat( tmpString "\n" ) ) 

else hnlPrintStringC strcatC tmpString "\n" ) ) 

) 
t 

) 

This procedure prints out the line for a PMOSfet element. It is used by 

the element 'pmos' in the sample circuit. 
hnlMapInstNameC hnlCurrentlnstName ) 

procedure( hnlCktsimPrintPMOSfetElement() 

let( ( tmpStringO ) 
sprintf( tmpStringO 

"  pm'/,s: pmos generic map C/,s, */,s)" 
hnlMapInstNameC hnlCurrentlnstName ) 

hnlCktsimGetPropValC "w" ) 
hnlCktsimGetPropValC "1" ) 

) 
hnlPrintStringC strcatC tmpStringO "\n" ) ) 

t 

) 

letC C tmpString ) 
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sprintf( tmpString 
"\t  port map (D => '/.s, G => '/.s, S => '/.s, B => */.s);" 

hnlCktsimNetOnTerm( "D" 0 ) 

hnlCktsimNetOnTerm( "G" 0 ) 
hnlCktsimNetOnTerm( "S" 0 ) 
hnlCkt s imPMOSBulkNetName 

) 
hnlPrintString( strcat( tmpString "\n" ) ) 

t 

) 
) 

; This procedure prints out the line for a resistor element. It is used by 

; the element "resistor" in the sample circuit. 

procedure( hnlCktsimPrintResistorElementO 

let( ( tmpString ) 
sprintf( tmpString 

"  */,s: resistor generic map (*/.s)\n\t  port map (p => '/.s, m => */.s);" 

hnlMapInstName( hnlCurrentlnstName ) 
hnlCktsimGetPropVaK "r" ) 
hnlCktsimNetOnTerm( "PLUS" 0 ) 
hnlCktsimNetOnTerm( "MINUS" 0 ) 

) 
hnlCktsimSprintf ( tmpString "'/.s" tmpString ) 
hnlPrintStringC strcat( tmpString "\n" ) ) 

t 

) 

) 

; This procedure prints out the line for a capacitor element. It is used 

; by the element 'capacitor' in the sample circuit. 

procedure( hnlCktsimPrintCapacitorElement() 

let( ( tmpString ) 
sprintf( tmpString 

"  */.s: capacitor generic map ('/.s)\n\t  port map (p => '/.s, m => 7,s);" 
hnlMapInstName( hnlCurrentlnstName ) 

hnlCktsimGetPropVaK "c" ) 
hnlCktsimNetOnTermC "PLUS" 0 ) 
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hnlCktsimNetOnTerm( "MINUS" 0 ) 

) 
hnlCktsimSprintf(tmpString '"/.s" tmpString) 

hnlPrintStringC strcat( tmpString "\n" ) ) 

t 

) 
) 

procedure( hnlCktsimPrintVCIElement() 

let( ( tmpString ) 
sprintf( tmpString 
"  '/.s: VCI generic map (*/.s)\n\t  port map (p => '/.s, m => '/.s, cp ■ > '/.s, cm => 5£s); 

hnlMapinstName( hnlCurrentlnstName ) 

hnlCktsimGetPropVaK "G" ) 
hnlCktsimNetOnTerm( "p" 0 ) 
hnlCktsimNetOnTermC "m" 0 ) 
hnlCktsimNetOnTermC "cp" 0 ) 
hnlCktsimNetOnTermC "cm" 0 ) 

) 
hnlCktsimSprintf (tmpString '"/.s" tmpString) 
hnlPrintStringC strcat( tmpString "\n" ) ) 

t 

) 
) 

2    LEX Input File for VHDL-A 

•/.{ 
/************** VHDL-A scanner in LEX format ********** 

* 

* Derived from a scanner of the ALLIANCE CAD toolset, 

* release 1.1, written by: 
* 

* MASI/CAO-VLSI CAD Team 
* Laboratoire MASI/CAO-VLSI 
* Tour 55-65, 2eme etage, Porte 13 
* Universite Pierre et Marie Curie (PARIS VI) 
* 4, place Jussieu 75252 PARIS Cedex 05, FRANCE 
* 

* and further modified by: 
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* 

* Thomas Dettmer 
* Dortmund University 
* Dept. of Computer Scienc, LSI 
* PB 500 500 
* D-44221 Dortmund (Germany) 
* Phone: +49-231-755-6464 
* e-mail: dettmer01sl.informatik.uni-dortmund.de 
* 
******************************************************** 

* 

* The original file, obtained from pub/src/VHDL/Grammar at 
* ftp.cs.utwente.nl contained the following notices: 
* 

* This file is not intended to be used for commercial purposes 
* without permission of the University of Dortmund 
* 

* NOTE THAT THERE IS NO WARRANTY FOR CORRECTNES, COMPLETENESS, 
* SUPPORT OR ANYTHING ELSE. 
*******************************************************/ 

«include "vhdllex.h" 

UCLETTER [A-Z] 
DIGIT [0-9] 
SPECCHAR [\#\&\>\(\)\*\+\,\-\.\/\:\; \<\«\>\_\ I ] 
SPACE [ \t] 
FEFFECT [\t\v\r\l\f] 
EOL \n 
LCLETTER [a-z] 
OTHERCHAR [\! \$\<D\?\[\\\] V\'\{\}\~] 

GRCHAR ({BASEGRCHAR}I{LCLETTER}I{OTHERCHAR}) 
BASEGRCHAR ({UCLETTER}I{DIGIT}I{SPECCHAR}I{SPACE}) 
LETTER ({UCLETTER}I{LCLETTER}) 
LETTORDIGIT ({LETTER}I{DIGIT}) 
DLIT {INT}(\.{INT})?({EXP})? 
INT {DIGIT}(_?{DIGIT})* 
EXP ([eE][-+]?{INT}) 
BASE {INT} 
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BINT {EDIGIT}(_?{EDIGIT})* 
EDIGIT ({DIGIT}I[a-fA-F]) 
BSPEC (BIb101oIXIx) 

XX 

{SPACE} { /* nothing */ } 
\k  { ECHO; return(T.Ampersand); } 
\' { ECHO; return(T.Apostrophe); } 
\( { return(T.LeftParen); } 
\) { return(T.RightParen); } 
"**" { ECHO; return(T.DoubleStar); } 
\* { ECHO; return(T.Star); } 
\+ { ECHO; return(T.Plus); } 
\, { return(T.Comma); } 
\- { ECHO; return(T.Minus); } 
":=" { ECHO; return(T.VarAsgn); } 
\: { return(T.Colon); } 
\; { return(T.Semicolon); } 
"<=" { ECHO; return(T.LESym); } 
">=" { ECHO; return(T.GESym); } 
\< { ECHO; return(T.LTSym); } 
\> { ECHO; return(T.GTSym); } 
« { ECHO; return(T.EQSym); } 
\/= { ECHO; return(T.NESym); } 
"=>" { return(T.Arrow); } 
"<>" { ECHO; return(T.Box); } 
\| { ECHO; return(T.Bar); } 
! { ECHO; return(T.Bar); } 
\. { ECHO; return(T.Dot); } 
\/ { ECHO; return(T.Slash); } 

{LETTER}(_?{LETTORDIGIT})* { 
int itoken; 
itoken=find.mc(yytext); 
if (itoken« -1) 
{ TokenValue *tkvalue = (TokenValue *) malloc( sizeof(TokenValue) ); 
tkvalue->Length=strlen(yytext); 
tkvalue->Value * (char *) malloc(tkvalue->Length + 1); 
strcpy(tkvalue->Value, yytext); 
tkvalue->TokenType = T.Identifier; 

#ifdef YYDEBUG 
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tkvalue->Position » yycolumno; 

tkvalue->Line = yylineno; 

#endif /* YYDEBUG */ 
yylval.Ptf * (VoidStar) tkvalue; 
return ( tkvalue->TokenType ); 

} 
else 
{ return ( itoken ); } 

} 

({DLIT})I({BASE}#{BINT}(\.{BINT})?#({EXP})?)I({BASE}:{BINT}(\.{BINT})?:({EXP})?) { 

TokenValue *tkvalue = (TokenValue *) 
malloc( sizeof(TokenValue) ); 
tkvalue->Length=strlen(yytext); 
tkvalue->Value = (char *) malloc(tkvalue->Length + 1); 

strcpy(tkvalue->Value, yytext); 
tkvalue->TokenType = T.AbstractLit; 

#ifdef YYDEBUG 
tkvalue->Position = yycolumno; 
tkvalue->Line = yylineno; 
#endif /* YYDEBUG */ 
yylval.Ptr « (VoidStar) tkvalue; 
return ( tkvalue->TokenType ); 

} 

'({GRCHAR}|\"IV/.)' { ECHO; return ( T.CharacterLit ); } 

(\"({GRCHAR}| (\"\") I V/.)*\") I (V/.({GRCHAR} I (V/.V/.) I\")*V/.) { 
ECHO; return ( T.StringLit ); } 

{BSPEC}(\"{EDIGIT}(_?{EDIGIT})*\"IV/.{EDIGIT}(_?{EDIGIT})*V/.) { 

ECHO; return ( T.BitStringLit ); } 

\n { /* end of line */ 

MVL.LINNUM++; 
/* tobuf( "\ny.4d\t", MVL.LINNUM);*/ 

yycolumno=0; 
/♦return(T.NEWLINE);*/ 
} 

\-\-.*$ { /* comment */ } 
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.  { ECHO;  /»return (T.UNKNOWN);*/ } 

VI, 
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3    YACC Input File for VHDL-A 
/****** syntax for a subset of VHDL-A in YACC format **********/ 

«include <stdio.h> 

»include "hdl.h" 

extern char yytext[]; 
extern int yylineno; 

%> 

*/union{ 
int lvalue; 
VoidStar Ptr; 

} 

•/.start Start 

Xtoken 
T.ACCESS 

T.AFTER 
T.ALIAS 

T.ALL 
T.AND 
T.ARCHITECTURE 

T.ARRAY 
T.ASSERT 
T.ATTRIBUTE 

T.BEGIN 
T.BLOCK 

T.BODY 
T.BUFFER 

T.BUS 
T.CASE 
T.COMPONENT 
T.CONFIGURATION 

T.CONSTANT 
T.DISCONNECT 

T.DOWNTO 

T.ELSE 
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T.ELSIF 
T.END 
T.ENTITY 

T.EXIT 
T.FILE 

T.FOR 
T.FUNCTION 

T.GENERATE 
T.GENERIC 
T.GUARDED 

T_IF 
T.IN 
T.INOUT 

T.IS 

T.LABEL 
T.LIBRARY 

T.LINKAGE 

T.LOOP 

T.MAP 
T.NAND 
T.NEW 
T.NEXT 
T.NODE 
T.NOR 
T.NULL 
T.OF 
T.ON 
T.OPEN 

T.OR 
T.OTHERS 

T.OUT 
T.PACKAGE 

T.PORT 
T.PROCEDURE 
T.PROCESS 

T.RANGE 
T.RECORD 
T.REGISTER 
T.REPORT 

T.RETURN 

T.SELECT 
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T.SEVERITY 
T.SIGNAL 

T.SUBTYPE 

T.THEN 

T.TO 
T.TRANSPORT 

T.TYPE 
T.UNITS 

T.UNTIL 

T.ÜSE 
T.VARIABLE 

T.WAIT 
T.WHEN 
T.WHILE 

T.WITH 
T.XOR 

/* VHDL binary operators */ 

•/.nonassoc T.EQSym T.NESym T.LTSym T.LESym T.GTSym T.GESym 

'/.left T.Plus T.Minus T.Ampersand 

'/.left MED.PRECEDENCE 
'/.left T.Star T.Slash T.MOD T.REM 
•/.nonassoc T.DoubleStar T.ABS T.NOT MAX.PRECEDENCE 

/* misc syms */ 

'/.token T.Apostrophe 
T.LeftParen 

T.RightParen 
T.Comma 
T.VarAsgn 

T.Colon 
T.Semicolon 

T.Arrow 

T.Box 
T.Bar 
T.Dot 

•/.token < Ptr > T.Identifier 

T.AbstractLit 
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T.CharacterLit 

T.StringLit 

T.BitStringLit 

Xtype < Ptr > 
ArchBody 

ArchDecl 
ArchDeclList 

ArchHeader 
ArchStmt 
ArchStmtList 
AssocActual 
AssocElmt 
AssocFormal 
AssocList 
BlockDeclItem 

CompAsp 
CompInstStmt 

ConcurStmt 
EntityAsp 
GenericMap 
InstUnit 

NodeDecl 

NodeList 
PortMap 
SignalList 

Start: 
I DesignList 

DesignList: 
ArchBody I DesignList ArchBody 

/* ARCHITECTURE BODY */ 

ArchBody: 
{ $$ = HDLArchBodyBeforeO; } 
ArchHeader ArchDecl T.BEGIN ArchStmt ArchEnd T.Semicolon 
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{ $$ » HDLArchBodyAfter($2, $3, $5); } 

ArchHeader: 
T.ARCHITECTURE T.Identifier T_OF T.Identifier T_IS 
{ $$ - HDLArchHeader($2, $4); } 

ArchDecl: 
{ $$ = (VoidStar) NULL; } 
I ArchDeclList { $$ «= HDLArchDecl($l); } 

ArchDeclList: 
BlockDeclItem { $$ = HDLCatNodeLists( (VoidStar) NULL, $1); } 
I ArchDeclList BlockDeclItem { $$ = HDLCatNodeLists($l, $2); } 

ArchStmt: 
{ $$ = (VoidStar) NULL; } 
I ArchStmtList { $$ = HDLArchStmt($l); } 

ArchStmtList: 
ConcurStmt < $$ » HDLNewListElmt((VoidStar) NULL, $1); } 
I ArchStmtList ConcurStmt { $$ = HDLNewListElmt($l, $2); } 

ArchEnd: 
T.END I T.END T.ARCHITECTURE 

BlockDeclItem: 
NodeDecl 
I SignalDecl { $$ = (VoidStar) NULL; } 
I ConfigSpec { $$ = (VoidStar) NULL; } 

NodeDecl: 
T.NODE NodeList T.Semicolon { $$ = $2; } 
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NodeList: 
T_Identifier { $$ = HDLNewListElmt((VoidStar) NULL, $1); } 
I NodeList T.Comma T.Identifier { $$ = HDLNewListElmt($l, $3); } 

SignalDecl: 
T.SIGNAL SignalList T.Semicolon 

SignalList: 
T.Identifier I SignalList T.Comma T.Identifier 

/*   CONFIGURATION SPECIFICATION   */ 

ConfigSpec: 
T.FOR CompSpec Bindlndic T.Semicolon 

CompSpec: 
InstList T.Colon T.Identifier 

InstList: 
LabelList I T.OTHERS I T.ALL 

LabelList: 
T.Identifier I LabelList T.Comma T.Identifier 

Bindlndic: 
I T.USE EntityAsp GenericMap PortMap 

EntityAsp: 
T.ENTITY T.Identifier Archldent { $$ = $2; } 

Archldent: 
I T.LeftParen T.Identifier T.RightParen 
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/* CONCURRENT STATEMENT */ 

ConcurStmt: 
CompInstStmt 

/* _  COMPONENT INSTANTIATION STATEMENT   */ 

CompInstStmt: 
T.Identifier T.Colon InstUnit GenericMap PortMap T.Semicolon 

{ $$ = HDLComponentInst($l, $3, $4, $5); } 

InstUnit: 
CompAsp I EntityAsp 

CompAsp: 
T.Identifier I T.COMPONENT T.Identifier {$$ = $2;} 

GenericMap: 
{ $$ ■ (VoidStar) NULL; } 
I T.GENERIC T.MAP T.LeftParen AssocList T.RightParen { $$ » $4; } 

PortMap: 
{ $$ = (VoidStar) NULL; } 
I T.PORT T.MAP T.LeftParen AssocList T.RightParen {$$ = $4; } 

AssocList: 
AssocElmt { $$ ■ HDLNewListElmt((VoidStar) NULL, $1); } 
I AssocList T.Comma AssocElmt { $$ = HDLNewListElmt($l, $3); } 

AssocElmt: 
AssocActual I AssocFormal T.Arrow AssocActual {$$ = $3;} 

AssocFormal: 
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T.Identifier 

AssocActual: 
T.Identifier I T.AbstractLit 

y.y. 

extern FILE *yyout; 

void yyerror(str) 

char* str; 

{ 
fprintf( yyout, "ERROR: '/.s at line */.d while reading "/.s'\n", str, 

yylineno, yytext ); 

} 
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